Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zheng Fan, ${ }^{\text {a }}$ Shang Shan ${ }^{\text {b }}$ * and Duan-Jun Xu ${ }^{\text {c }}$

${ }^{\text {a }}$ College of Biological and Environmental Engineering, Zhejiang University of Technology, People's Republic of China, ${ }^{\text {b }}$ College of
Chemical and Materials Engineering, Zhejiang University of Technology, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail:
shanshang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.134$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-3-Methoxyacetophenone 2,4,6-trinitrophenylhydrazone

Crystals of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{7}$, were obtained by a condensation reaction of 3-methoxyacetophenone and 2,4,6trinitrophenylhydrazine. The molecule adopts an E configuration about the $\mathrm{C} 8=\mathrm{N} 5$ bond. $\pi-\pi$ stacking is observed between the methoxyphenyl and trinitrophenyl rings of neighbouring molecules.

Comment

As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe et al., 1993), a series of nitrophenylhydrazone and dinitrophenylhydrazone derivatives has been synthesized in our laboratory in order to investigate the relationship between structure and bioactivity. As part of the ongoing work, we recently synthesized the title trinitrophenylhydrazone compound, (I), and determined its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. The molecule of (I) crystallizes in the E configuration, with the trinitrophenyl and methoxyphenyl groups located on opposite sides of the $\mathrm{C} 8=\mathrm{N} 5$ double bond (Table 1) as commonly found in phenylhydrazone (Bolte \& Dill,1998), nitrophenylhydrazone (Shan et al., 2004) and dinitrophenylhydrazone (Shan et al., 2003). The molecule of (I) is nearly planar, except that the N1-nitro group is almost perpendicular to the aromatic plane [dihedral angle $=80.70(16)^{\circ}$] to minimize the repulsion between the N1-nitro group and hydrazone atom N 5 . The dihedral angles between the C1/N4/N5/C8 hydrazone group and the trinitrophenyl group [6.9 (3) ${ }^{\circ}$], and between the hydrazone and methoxyphenyl groups [7.9 (3) ${ }^{\circ}$, illustrate the planarity of the main body of the molecule.

The N $4-\mathrm{C} 1$ bond distance of 1.338 (2) \AA indicates a partial double bond between the imino and the trinitrophenyl groups. Both the $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bonds are significantly longer

Received 25 July 2005 Accepted 26 July 2005 Online 30 July 2005

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids. The intramolecular hydrogen bond is indicated by a dashed line.

Figure 2
$\pi-\pi$ stacking between trinitrophenyl rings [symmetry code: (i) $1-x, 1-$ $y, 1-z]$.

Figure 3
$\pi-\pi$ stacking between methoxyphenyl rings [symmetry code: (iv) $\frac{1}{2}-x,-\frac{1}{2}$ $\left.+y, \frac{1}{2}-z\right]$.

Figure 4
The packing, showing the weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines). H atoms have been omitted for clarity.
than the average distance of 1.375 (3) \AA for other $\mathrm{C}-\mathrm{C}$ bonds in the same aromatic ring. This effect is found in nitrophenylhydrazone and dinitrophenylhydrazone compounds reported previously (Bolte \& Dill, 1998; Ohba, 1996; Borwick et al., 1997; Naidu et al., 1996; Shan et al., 2003, 2004). This might be due to the overlap of the non-bonding orbital of the imine Natom and the π orbitals of the arene, thus contributing to the iminocyclohexadiene resonance structure.

Partially overlapped trinitrophenyl and methoxyphenyl rings are observed in (I) (Figs. 2 and 3). The dihedral angle between the trinitrophenyl ring and the methoxyphenyl ring at $(1-x, 1-y, 1-z)$ is $6.3(1)^{\circ}$, with a centroid-centroid separation of 3.745 (1) \AA; the dihedral angle between the trinitrophenyl ring and the methoxyphenyl ring at $\left(\frac{1}{2}-x,-\frac{1}{2}+\right.$ $\left.y, \frac{1}{2}-z\right)$ is $2.19(12)^{\circ}$, with a centroid-centroid separation of 3.7034 (11) \AA. These values suggest the existence of $\pi-\pi$ stacking between nearly parallel but laterally displaced trinitrophenyl and methoxyphenyl rings.

Both intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding exist in (I) (Table 2 and Fig. 4).

Experimental

2,4,6-Trinitrophenylhydrazine $(0.24 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in ethanol (18 ml) and acetic acid (0.3 ml) was added slowly with stirring. The solution was heated at about 333 K for several minutes until it became clear. 3-Methoxyacetophenone ($0.15 \mathrm{~g}, 1 \mathrm{mmol}$) was added dropwise with continuous stirring, and the mixture solution was refluxed for 2 h . When the solution cooled to room temperature, red microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization twice from a mixture of dichloromethane and toluene (4:1 v / v) produced well shaped single crystals of (I).

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{7}$
$M_{r}=375.30$
Monoclinic, $P 2_{\mathrm{h}} / n$
$a=9.726(4) \mathrm{A}$
$b=14.6633(7) \AA$
$c=11.6359(4) \AA$
$\beta=100.576(2)^{\circ}$
$V=1642.44(12) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.518 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 9592 \\
& \quad \text { reflections } \\
& \theta=3.0-26.0^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.32 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID	2301 reflections with $I>2 \sigma(I)$
\quad diffractometer	$R_{\text {int }}=0.043$
ω scans	$\theta_{\max }=27.0^{\circ}$
Absorption correction: none	$h=-12 \rightarrow 12$
14416 measured reflections	$k=-18 \rightarrow 18$
3543 independent reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.134$
$S=1.02$
3543 reflections
246 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 4-\mathrm{C} 1$	$1.338(2)$	$\mathrm{N} 5-\mathrm{C} 8$	$1.287(2)$
$\mathrm{N} 4-\mathrm{N} 5$	$1.376(2)$		
$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 5$	$121.22(15)$	$\mathrm{C} 8-\mathrm{N} 5-\mathrm{N} 4$	$116.76(15)$

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4. . O6	0.86	1.96	2.600 (2)	131
C7-H7C $\cdots \mathrm{O}^{2}$	0.96	2.41	3.293 (3)	152
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.47	3.393 (3)	170
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O} 4^{\text {iii }}$	0.96	2.53	3.309 (3)	138

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in the riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bolte, M. \& Dill, M. (1998). Acta Cryst. C54, IUC9800065.
Borwick, S. J., Howard, J. A. K., Lehmann, C. W. \& O'Hagan, D. (1997). Acta Cryst. C53, 124-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Naidu, S. M., Krishnaiah, M., Sivakumar, K. \& Sharma, R. P. (1996). Acta Cryst. C52, 1054-1056.
Ohba, S. (1996). Acta Cryst. C52, 2118-2119.
Okabe, N., Nakamura, T. \& Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Shan, S., Wang, X.-J., Hu, W.-X. \& Xu, D.-J. (2004). Acta Cryst. E60, o134501347.

Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. \& Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

